IV B.Tech - I Semester – Regular Examinations - DECEMBER 2023

MACHINE LEARNING (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.				
			DL		Marks				
	UNIT-I								
1	Pro	ovide a concise definition of Machine							
	Lea	rning and explain its significance in the field							
	of	artificial intelligence. Highlight the core	L2	CO1	14 M				
	con	nponents involved in designing a learning							
	sys	tem.							
	1	OR		1	<u> </u>				
2	a)	Explain the process of choosing an							
		approximation algorithm for the target	L2	CO1	7 M				
		Function.							
	b)	Provide an overview of how Machine							
		Learning is applied in enhancing the							
		functionality of Search Engines. Discuss the							
		algorithms and techniques that enable	L2	CO1	7 M				
		search engines to deliver more relevant							
		results to users.							

		UNIT-II			
3	a)	Provide an example to illustrate the process of pruning and its impact on a decision tree's structure and accuracy.	L3	CO2	7 M
	b)	Illustrate the strengths and weaknesses of the ID3 algorithm in the context of decision tree construction.	L3	CO2	7 M
	-	OR			
4	a)	Interpret the concept of a Naive Bayes Classifier and provide a real-world example of its application.	L3	CO2	7 M
	b)	Explain the terms accuracy, precision, recall (sensitivity) and F-score.	L3	CO3	7 M
		UNIT-III			
5	a)	Discuss a practical application where SVMs are particularly effective and why they are chosen over other algorithms.	L3	CO3	7 M
	b)	Compare and contrast Bagging and Boosting as ensemble methods in machine learning.	L3	CO3	7 M
	1	OR			
6	a)	Produce the concept of Instance-Based Learning in machine learning.	L3	CO3	7 M
	b)	Illustrate the concept of Case-Based Reasoning (CBR) in machine learning. How does CBR work and what are its advantages in handling complex problem-solving tasks?	L3	CO3	7 M

		UNIT-IV			
7	a)	Compare and contrast partition method k-means with hierarchical methods Agglomerative Algorithm.	L3	CO3	7 M
	b)	Describe the Apriori algorithm for frequent itemset generation. How does the Apriori algorithm efficiently find frequent itemsets in large datasets?	L3	CO3	7 M
	I	OR	I	II	
8	a)	Explain the concept of the FP-Tree representation and how it simplifies the process of discovering frequent itemsets?	L3	CO3	7 M
	b)	Describe two cluster evaluation measures, Cohesion and Separation and the Silhouette Coefficient.	L3	CO3	7 M
		UNIT-V			
9	a)	Analyze the role of exploration strategies in Q-learning and their impact on learning efficiency.	L4	CO4	7 M
	b)	Explain the key elements of reinforcement learning, including the learning task and its components.	L4	CO4	7 M
	·	OR	·	·	
10	a)	Compare and contrast model-based learning methods such as Value Iteration and Policy Iteration in reinforcement learning.	L4	CO4	7 M

b)		ploration	strategies	in			
	reinforcement	learning.	Explain	the	тл	CO4	7 M
	challenges of	balancing	exploration	and	L4	C04	/ 1 V1
	exploitation.						